Some comments on elliptic curves over general number fields and Brill-Noether modular varieties

نویسنده

  • B. Mazur
چکیده

Very rough notes for a lecture to be given October 5, 2013 at the Quebec/Maine Number Theory Conference. I’ll discuss diophantine questions that take on a somewhat different flavor when one deals with varying number fields rather than restricts to Q as a base field: an on-going joint project with Maarten Derickx and Sheldon Kamienny regarding Mordell-Weil torsion, and some recent work with Zev Klagsbrun and Karl Rubin (essentially) regarding Mordell-Weil rank.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brill-noether Theory for Curves of a Fixed Gonality

We prove a generalization of the Brill–Noether theorem for the variety of special divisors W r d (C) on a general curve C of prescribed gonality. The main result calculates the dimension of the largest component of W r d (C). We build on previous work of Pflueger, who used an analysis of the tropical divisor theory on special chains of cycles to give upper bounds on the dimensions of Brill–Noet...

متن کامل

Du Val Curves and the Pointed Brill-noether Theorem

We show that a general curve in an explicit class of what we call Du Val pointed curves satisfies the Brill-Noether Theorem for pointed curves. Furthermore, we prove that a generic pencil of Du Val pointed curves is disjoint from all Brill-Noether divisors on the universal curve. This provides explicit examples of smooth pointed curves of arbitrary genus defined over Q which are Brill-Noether g...

متن کامل

Modular Varieties of D-elliptic Sheaves and the Weil-deligne Bound

We compare the asymptotic grows of the number of rational points on modular varieties of D-elliptic sheaves over finite fields to the grows of their Betti numbers as the degree of the level tends to infinity. This is a generalization to higher dimensions of a well-known result for modular curves. As a consequence of the main result, we also produce a new asymptotically optimal sequence of curves.

متن کامل

Introduction to Drinfeld Modules

(1) Explicit class field theory for global function fields (just as torsion of Gm gives abelian extensions of Q, and torsion of CM elliptic curves gives abelian extension of imaginary quadratic fields). Here global function field means Fp(T ) or a finite extension. (2) Langlands conjectures for GLn over function fields (Drinfeld modular varieties play the role of Shimura varieties). (3) Modular...

متن کامل

Non-Abelian Zeta Functions for Elliptic Curves

In this paper, new local and global non-abelian zeta functions for elliptic curves are defined using moduli spaces of semi-stable bundles. To understand them, we also introduce and study certain refined Brill-Noether locus in the moduli spaces. Examples of these new zeta functions and a justification of using only semi-stable bundles are given too. We end this paper with an appendix on the so-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014